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Preliminaries and Basic Definitions

Some Notation

Some Notation Adopted Here

N := {1, 2, 3, . . .},

N0 := {0} ∪ N = {0, 1, 2, . . .}, and

P denotes the set of primes.
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Preliminaries and Basic Definitions

Commutative Monoids

Definition. A commutative monoid is a pair (M, ∗), where M is a set and ∗ is a binary
operation on M satisfying the following conditions.

∗ is associative: b ∗ (c ∗ d) = (b ∗ c) ∗ d for all b, c, d ∈ M;

∗ is commutative: b ∗ c = c ∗ b for all b, c ∈ M;

there exists e ∈ M such that e ∗ b = b for all b ∈ M.

Definition. Let M be a monoid.

U(M) denotes the set of invertible elements of M.

Definition. A subset N of a monoid M is called a submonoid of M if N contains the
identity element and is closed under the operation of M.

Remark. For S ⊆ M, the arbitrary intersection of (additive) submonoids of M containing
S is also a submonoid of M and is denoted by ⟨S⟩.
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Preliminaries and Basic Definitions

Examples of Monoids

Today’s Conventions

We call a commutative monoid (M, ∗) simply a monoid if it is cancellative:
b ∗ d = c ∗ d implies b = c for all b, c, d ∈ M.

M is torsion-free if for all b, c ∈ M and n ∈ N, the equality nb = nc implies that
b = c. All monoids are also assumed to be torsion-free.

For a monoid (M, ∗), we write M instead of (M, ∗).

Examples of Monoids

Additive submonoids of N0 are called numerical monoids.

N0 \ {1} and {0} ∪ N≥n (for every n ∈ N).

Additive submonoids of Q≥0 are called Puiseux monoids.

{0} ∪Q≥1 and
〈
1
p
: p ∈ P

〉
=

〈{
1
p
: p ∈ P

}〉
.
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Preliminaries and Basic Definitions

Rank

Definition. Let M be a monoid.
The rank of a monoid M is the dimension of the smallest vector space over Q containing
a copy of M (if it exists).

Examples

The rank-1 torsion-free monoids are precisely the submonoids of (Q,+).

The rank-1 torsion-free monoids that are not groups are precisely the submonoids
of (Q≥0,+), i.e., the (nonzero) Puiseux monoids.

The additive monoid consisting of all lattice points in the first quadrant is a rank-2
monoid.
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Preliminaries and Basic Definitions

Atomicity and the ACCP

Definitions. Let M be a monoid.

A principal ideal of M is a set of the form a+M where a ∈ M.

We say that M satisfies the ascending chain condition on principal ideals (ACCP) if
every ascending chain of principal ideals a1 +M ⊆ a2 +M ⊆ . . . is eventually
constant.

If a is an element of M, then a is an atom if whenever a = b + c for elements
b, c ∈ M, then either b or c is invertible.

The set of atoms is denoted A(M).

M is atomic if every element can be written as a sum of atoms.

Remark. Every monoid satisfying the ACCP is atomic.
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Preliminaries and Basic Definitions

A Motivating Example

Example. For each n ∈ N, let pn be the n-th odd prime, and define the Puiseux monoid

M :=

〈
1

2n−1pn
: n ∈ N

〉
.

M is Grams’ monoid.

Exercise. M is atomic with set of atoms

A(M) =

{
1

2n−1pn
: n ∈ N

}
.

Exercise. M does not satisfy the ACCP because
(

1
2n

+M
)
n≥1

forms an ascending chain

of principal ideals of M that does not stabilize.
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Existence of Maximal Common Divisors (MCD):, ACCP and (Strong) MCD Property

Maximal Common Divisors

Definition.

Let M be a monoid and let S be a nonempty subset of M.

We say that d ∈ M is a common divisor of S if d divides every element of S .

We say that d ∈ M is a maximal common divisor of S if d is a common divisor of S
and every common divisor of S − d is a unit.
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Existence of Maximal Common Divisors (MCD):, ACCP and (Strong) MCD Property

Maximal Common Divisors

We can define several properties of monoids related to maximal common divisors:

A monoid M is k-MCD (k ∈ N) if every subset of size k has a maximal common
divisor.

A monoid M is MCD if it is k-MCD for every positive integer k.

A monoid M is strongly MCD if every nonempty subset (not necessarily finite) of M
has an MCD.

Remark. It follows from the definitions that every strongly MCD monoid is an MCD
monoid, which in turn is also k-MCD for all k ∈ N.
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Existence of Maximal Common Divisors (MCD):, ACCP and (Strong) MCD Property

Maximal Common Divisors and the ACCP

Fact. It is known that every ACCP monoid is MCD.

Does ACCP imply strongly MCD? Answer: yes.

Proposition (L-W-Z 2024)

If a (commutative and cancellative) monoid M satisfies the ACCP, then it is strongly
MCD.

Does the converse hold? Answer: no.

Example. Consider the monoid M = R≥0 of the nonnegative real numbers under
addition. Then

(
1
n
+M

)
n≥1

is an ascending chain of principal ideals that does not

stabilize. However, every nonempty subset of M has a maximal common divisor, namely
its infimum.

This example shows that strongly MCD monoid does not even have to be atomic.

However, the converse does hold for some monoids.

Theorem (L-W-Z 2024)

If a (commutative and cancellative) monoid is countable and strongly MCD, then it
satisfies the ACCP.
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Existence of Maximal Common Divisors (MCD):, ACCP and (Strong) MCD Property

Integral Domains and Fields

Definition. A (commutative) ring is a triple (R,+, ·), where R is a set and + and · are
binary operations on R satisfying the following conditions.

(R,+) is an abelian group whose identity is denoted by 0.

(R, ·) is a (commutative) monoid whose identity is denoted by 1.

+ and · are distributive: a(b + c) = ab + ac for all a, b, c ∈ R.

Examples

Z, Q, R are rings.

Definitions

1 An integral domain is a ring R such that for all a, b ∈ R the equality ab = 0 implies
that either a = 0 or b = 0, in which case, (R \ {0}, ·) is called the multiplicative
monoid of R.

2 A field is an integral domain R such that the multiplicative monoid of R is an
abelian group.

Examples

Q and R are fields, while Z is an integral domain that is not a field.
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Existence of Maximal Common Divisors (MCD):, ACCP and (Strong) MCD Property

Monoid Domains

Let R be an integral domain, and let M be a monoid.

Definition. The monoid domain R[M] of M over R is the commutative ring with identity
consisting of all polynomial expressions in an indeterminate x with coefficients in R and
exponents in M (under polynomial-like addition and multiplication).

Example. For f := x4 + x
3
2 and g := x

3
2 + 1 in the monoid domain Z[Q≥0],

f + g = x4 + 2x
3
2 + 1 and f · g = x4+ 3

2 + x4 + x3 + x
3
2 .

Examples of Monoid Domains

The polynomial ring R[x ] is the monoid domain R[N0].

The Laurent polynomial ring R[x±1] is the monoid domain R[Z].
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A Certain Class of Puiseux Monoids: An Atomic Decomposition and the MCD Property

Prime Reciprocal Puiseux Monoids

Definition. Let (pn)n≥1 be a strictly increasing sequence of primes.

M :=

〈
1

pnpn+2
: n ∈ N

〉
is the 2-prime reciprocal Puiseux monoid of (pn)n≥1.

Remark. For a 2-prime reciprocal monoid, the following statements hold:

M is atomic with

A(M) =

{
1

pnpn+2
: n ∈ N

}
.

M does not satisfy the ACCP because
(

1
p2n

+M
)
n≥1

forms an ascending chain of

principal ideals of M that does not stabilize.

Problem (Open Question)

Let M be a 2-prime reciprocal Puiseux monoid, and let F be a field. Is the monoid
domain F [M] atomic?
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A Certain Class of Puiseux Monoids: An Atomic Decomposition and the MCD Property

Representation of Elements in Prime Reciprocal Puiseux Monoids

Theorem (L-W-Z 2024)

Let (pn)n≥1 be a strictly increasing sequence of primes, and let M be the 2-prime
reciprocal Puiseux monoid induced by (pn)n≥1. Then each q ∈ M can be written as
follows:

q = c +

nq−2∑
i=−1

ci+2
1

pipi+2
,

where nq = max({0} ∪ {i ∈ N : vpi (q) < 0}), p−1 = p0 = 1, and c, ci ∈ N0 for every
i ∈ [0, n − 1].

Corollary. For every q, if nq ≥ 1, 1
pnq−2pnq

divides q.
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A Certain Class of Puiseux Monoids: An Atomic Decomposition and the MCD Property

MCDs in Prime Reciprocal Puiseux Monoids

Theorem (L-W-Z 2024)

Any 2-prime reciprocal Puiseux monoid is an MCD monoid.

As all Puiseux monoids are submonoids of Q≥0 and thus countable, we get as a corollary
of our earlier result:

Corollary. Any 2-prime reciprocal Puiseux monoid is MCD but not strongly MCD.

Evin Liang, Alexander Wang, and Lerchen Zhong Maximal Common Divisors in Puiseux Monoids



Another Class of Puiseux Monoids:, the MCD and MCD-Finite Properties

Grams-like Puiseux Monoids

Problem (Open Questions)

Let M be Grams’ monoid, and let F be a field. Is the monoid domain F [M] atomic?

Let (dn)n≥1 be a strictly increasing sequence of positive integers, and let (pn)n≥1 be a
sequence of pairwise distinct primes such that pn ∤ dm for any m, n ∈ N. Now consider
the following Puiseux monoids:

M :=
〈 1

dnpn
: n ∈ N

〉
and N :=

〈 1

dn
: n ∈ N

〉
.

We call M the Grams-like monoid of the sequences (dn)n≥1 and (pn)n≥1 or, simply, a
Grams-like monoid.

Remark. It is easy to verify that

1 M is atomic with A(M) =
{

1
dnpn

: n ∈ N
}
.

2 If N is a valuation monoid, then M does not satisfy the ACCP.
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Another Class of Puiseux Monoids:, the MCD and MCD-Finite Properties

Representation of Elements in Grams-like Monoids

Proposition (L-W-Z 2024)

Let M be a Grams-like monoid. Each element q ∈ M can be uniquely written as follows:

q = c0(q) +
∑
n∈N

cn(q)
1

dnpn
,

where c0(q) ∈ N and (cn(q))≥1 is a sequence of nonnegative integers that eventually
stabilizes to 0 such that cn(q) ∈ [0, pn − 1] for every n ∈ N.

Definition. Let M be a Grams-like monoid. For each q ∈ M, we call

c0(q) +
∑
n∈N

cn(q)
1

dnpn

the canonical sum decomposition of q provided that the element c0(q) and the sequence
(cn(q))n≥1 satisfy the conditions specified in the above proposition.
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Another Class of Puiseux Monoids:, the MCD and MCD-Finite Properties

Immediate Consequences

Corollary. Let M be a Grams-like monoid. For any q1, q2 ∈ M such that q1 |M q2, let

q1 = c0(q1) +
∑
n∈N

cn(q1)
1

dnpn
and q2 = c0(q2) +

∑
n∈N

cn(q2)
1

dnpn

be the canonical sum decompositions of q1 and q2, respectively. Then the following
statements hold.

1 c0(q1) |N c0(q2).

2 cn(q2) = (cn(q1) + cn(q2 − q1)) (mod pn) for every n ∈ N.

3 If c0(q1) = c0(q2), then c0(q2 − q1) = 0.

4 If c0(q1) = c0(q2), then cn(q1) + cn(q2 − q1) < pn for every n ∈ N.

5 If c0(q1) = c0(q2), then cn(q1) ≤ cn(q2) for every n ∈ N.
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Another Class of Puiseux Monoids:, the MCD and MCD-Finite Properties

MCD and MCD-finite Properties of Grams-like Monoids

Theorem (L-W-Z 2024)

Let M be a Grams-like monoid.

If N is a valuation monoid, then M is an MCD monoid.

M is MCD-finite if and only if N is MCD-finite.
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An Atomic Monoid without the MCD Property

An Atomic Monoid that is not 2-MCD

Example. Let pn denote the n-th prime number. Consider the rank-2 submonoid M of
Q2

≥0 defined in the following way:

M :=

〈(
1

2np2n
, 0

)
,

(
1

2np2n+1
,

1

p2n+1

)
: n ∈ N

〉
.

Fact. Every element in the defining generating set of M is an atom.

Proposition (L-W-Z 2024)

(1, 0) and (1, 1) do not have a maximal common divisor. Therefore, M is an atomic
monoid that is not 2-MCD.
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An Atomic Monoid without the MCD Property
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An Atomic Monoid without the MCD Property

End of Presentation

THANK YOU!
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